
OWASP

Juice Shop

C4PO
v.0.0.1

Penetration Test

Report of Findings

Cel

07/31/2023

Version 1.0

No part of this document may be disclosed to outside sources without the explicit written authorization of the tester

Table of Contents

State of Confidentiality

Executive Summary

Assessment Overview and Recommendations

Number of Findings per Category

Severity Overview of Findings

Technical Findings and Comments Details

INFORMATION_GATHERING OTG-INFO-002

INFORMATION_GATHERING OTG-INFO-003

INFORMATION_GATHERING OTG-INFO-004

INFORMATION_GATHERING OTG-INFO-005

INFORMATION_GATHERING OTG-INFO-010

CONFIGURATION_AND_DEPLOY_MANAGEMENT_TESTING OTG-CONFIG-002

AUTHENTICATION_TESTING OTG-AUTHN-007

AUTHENTICATION_TESTING OTG-AUTHN-009

INPUT_VALIDATION_TESTING OTG-INPVAL-005

INPUT_VALIDATION_TESTING OTG-INPVAL-005_3

INPUT_VALIDATION_TESTING OTG-INPVAL-005_6

ERROR_HANDLING OTG-ERR-001

CRYPTOGRAPHY OTG-CRYPST-001

CLIENT_SIDE_TESTING OTG-CLIENT-001

Appendencies

Findings Severities

Risk Matrix

Severity Rating Definitions

State of Confidentiality

The contents of this document are considered to be proprietary and business confidential information.
This information is to be used only in the performance of its intended use. This document may not be
released to another vendor, business partner or contractor without prior written consent. Additionally, no
portion of this document may be communicated, reproduced, copied or distributed without the prior
consent. The contents of this document do not constitute legal advice. The offer of services that relate
to compliance, litigation or other legal interests are not intended as legal counsel and should not be
taken as such. The assessment detailed herein is against the company for examination purposes, and
the vulnerabilities included in this document should be mitigated in order to secure external and / or
internal infrastructure.

Executive Summary

OWASP contracted Cel to perform a Penetration Test to identify security weaknesses, determine the
impact to OWASP, document all findings in a clear and repeatable manner, and provide remediation
recommendations.

Assessment Overview and Recommendations

Number of Findings per Category

Severity Overview of Findings

OTG-INFO-002

INFORMATION_GATHERING

Webserver Type

When looking at "Server" property of the repsonse header we can see that the application is
running on a Cowboy HTTP Server.

0dd84537-6be7-468f-a4ad-6cf30d8fb7dcComment:

Title:

Description:

OTG-INFO-003

INFORMATION_GATHERING

Deprecated MIME Types

When looking through the main.js file of the webserver we can search for "allowedMimeType" and
get presented with the following:
- application/pdf
- application/xml
- text/xml
- application/zip
- application/x-zip-compressed
- multipart/x-zip

Especially the upload of xml files can result in a XXE Attack or in a RCE.

f4901f6b-6814-450c-8734-7ff1b3eed9b0Comment:

Title:

Description:

OTG-INFO-004

INFORMATION_GATHERING

Running nmap against the Webserver we can find the following information about the installed
services.
Interesting ports on 54.78.134.111:
- 993/tcp is running imaps
- 995/tcp is running pop3s
- 3128/tcp is runnung squid-http
- 8080/tcp is running http-proxy

Enumuration of Webserver

Webserver

Step 1:
Resolve IP-Address of Webserver (https://juice-shop.herokuapp.com/) through nslookup.

Step 2:
Scan the address that got returned from the DNS via nmap (nmap -sC -sV 54.78.134.111).

Step 3:
See what service runs on which port.

No mitigation to avoid, minimize or compensate the finding found or needed.

ac45159b-4108-4ec2-b6aa-d3bfc5d597d2

LOW

https://juice-shop.herokuapp.com/

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

Affected URL's / API's:

OTG-INFO-005

INFORMATION_GATHERING

When looking through the application it is possible to find the censored e-mail of an user with an
juice-shop mail (***der@juice.sh.op) that can be found on the "About Us" page by the customer
feedback section.

Upon further investigating the product reviews the complete admin e-mail (admin@juice-sh.op) can
be found in the review for the Apple Juice.

This account can now be used by an attacker to try to bruteforce into the account since the
username is now known.

Admin Useraccount

Webserver only.

Step 1:
Look at the hompage.

Step 2:
Click on the "Apple Juice (1000ml)" Item.

Step 3:
Open the reviews.

You can now directly see the e-mail of the admin user.

Censor important usernames of accounts with high privileges like seen on the "About Us" page by
the customer feedback section.

972b0cee-13e5-4267-ab5c-5b00c9657578

HIGH

https://juice-shop.herokuapp.com/#/about

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

Affected URL's / API's:

OTG-INFO-010

INFORMATION_GATHERING

OWASP Juice Shop Architecture

In the frontend the popular Angular framework is used to create a so-called Single Page
Application.
JavaScript is also used in the backend as the exclusive programming language: An Express
application hosted in a Node.js server delivers the client-side code to the browser. It also provides
the necessary backend functionality to the client via a RESTful API.
As an underlying database a light-weight SQLite was chosen, because of its file-based nature.
Sequelize and finale-rest are used as an abstraction layer from the database.
As an additional data store, a MarsDB is part of the OWASP Juice Shop.
The application also offers user registration via OAuth 2.0 so users can sign in with their Google
accounts.

5514f0d3-7c80-4138-bf3e-56b515560f00Comment:

Title:

Description:

OTG-CONFIG-002

CONFIGURATION_AND_DEPLOY_MANAGEMENT_TESTING

Security flaws are caused by fragilely implemented access rights (or non-well-thought access
constructs).
Access control is based on:
- Confidentiality of the requested element
- Role or permissions of the requesting user
Flaws in access control can lead to:
- Unauthorized users can obtain, manipulate or delete important and sensitive data
Changing the bid inside the session storage in the frontend or intercepting the GET request for the
basket and changing the id parameter results in getting the basket of another user (as long as the
new id is valid).

Broken Access Control

This does not just affect the frontend but also destroys the integrity of the data from the backend
since you can see the basket of other users.

Step 1:
Login as any user.

Step 2:
Go to the basket page.

Step 3:
Open the browser console and change the bid value or intecept and manipulate the GET request
for the basket.

Decide for a matching access control model:
- Discretionary access control (DAC)
- Role-based access control (RBAC)
- Mandatory access control (MAC)
- Attribute-based access control (ABAC)
- Rule-based access control (RuBAC)

354c62b1-8f7f-4a65-9f1b-c4f6388f5506

HIGH

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

https://juice-shop.herokuapp.com/#/basket, https://juice-shop.herokuapp.com/rest/basket/{id}

Affected URL's / API's:

Proper configuration of the single elements that make up an application architecture is important in
order to prevent mistakes that might compromise the security of the whole architecture.

The web server or application server configuration takes an important role in protecting the contents
of the site and it must be carefully reviewed in order to spot common configuration mistakes.

Accessing the Logfiles of the server is a problem that was encounterd.

Sensitive Data Exposure

Webserver

Step 1:
Search for different sub directories on the webserver with tools like DirBuster.

Step 2:
Go to the sub directory /support/logs

Step 3:
Download the access.log.2023-07-19 file.

Block access for users who are not authenticated and / or authorized to see the logs or other sub
directories like the ftp content.

6edcdc7b-196e-4c72-bc74-7a8ae2ab3818

HIGH

https://juice-shop.herokuapp.com/support/logs, https://juice-shop.herokuapp.com/ftp/

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

Affected URL's / API's:

OTG-AUTHN-007

AUTHENTICATION_TESTING

There may be authentication weaknesses because of:
- Automated attacks such as credential stuffing, where the attacker has a list of valid usernames
and passwords.
- Brute force or other automated attacks.
- Permitting default, weak, or well-known passwords, such as ”123456".
- Weak or ineffective credential recovery and forgot-password processes.
- Using plain text, encrypted, or weakly hashed passwords data stores.
- Missing or ineffective multi-factor authentication.
- Exposing session identifier in the URL.
- Reusing session identifier after successful login.

Permitting default, weak, or well-known passwords

Userdata

Step 1:
Go to the login page and then try to register a new user.

Step 2:
Fill out the form and type in a basic password like "lorem".

Step 3:
Click on "Register"

Change the Switch for "Show password advice" to enforce these policies on creation and just give
them the users as an suggestions.

More generally you should:
- Implement password validation and secure password guidelines
- Implement countermeasures against brute-force attacks
- Use best practices for session management
- Check secure password policies from "Hive Systems"

97daef3d-46be-43de-9950-7451da2e99c9

MEDIUM

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

https://juice-shop.herokuapp.com/#/register

Affected URL's / API's:

OTG-AUTHN-009

AUTHENTICATION_TESTING

The password change and reset function of an application is a
self-service password change or reset mechanism for users. This
self-service mechanism allows users to quickly change or reset
their password without an administrator intervening.
When passwords are changed they are typically changed within the application.
When passwords are reset they are either rendered within the application or emailed to the user.
This may indicate that the passwords are stored in plain text or in a decryptable format.

When looking at the security question when creating an account we can see the options a user has.
This information can be used to attack the web application, for example, through a brute force when
resetting a password.

Resetting Jim's Password

Useraccount: jim@juice-sh.op

Step 1:
We can get to the email for jim when looking at the reviews for the "Green Smoothie" in the Juice
Shop homepage.

Step 2:
Go to the login page and click on "Forgot your password?"

Step 3:
Enter jims email (jim@juice-sh.op) and click inside the "Security Question" Field.
We can now see that he question jim choose was "Your eldest siblings middle name?"

Step 4:
Since names are a simple property to find out if the user answered the question honestly.
We can use a list of the most popular names for males and females and brute-force the forgot
password process with tools like BurpSuite or OWASP ZAP.

16bf3a81-982a-445d-8a84-d0b151bd1f71

HIGH

Finding:

Title:

Description:

Impact:

Reproduction Steps:

To stop an attacker from brute-forcing anything you should
- Limit Specific Request Attempts
- Monitor IP addresses
- Use Two-Factor Authentication (2FA)
- Use CAPTCHAs
- Use Web Application Firewalls (WAFs)

https://juice-shop.herokuapp.com/#/forgot-password, https://juice-
shop.herokuapp.com/rest/user/reset-password

Mitigation:

Affected URL's / API's:

OTG-INPVAL-005

INPUT_VALIDATION_TESTING

Provoked an error that is neither gracefully nor consistently handled.

SQLITE Error

Webapplication and Node.js Server.

Step 1:
Go to Login.

Step 2:
Insert ' in username field and any string in password field.

Step 3:
Send the request and observe the error message [object object displayed].
Inside the Network traffic the response body for the login POST request with the "incomplete" SQL
Injection returns to much information.

We can see that the errorcode is from SQLITE and get the sql query returned that got executed:
SELECT * FROM Users WHERE email =" ' " AND password = "randomString"

Sanitize and validate Input Fields.
Use proper error handeling in Backend. Rule of thumb: Escape all user input...

5924c1c6-348b-403c-af41-d5e0fab05c1b

MEDIUM

No specific URL's or API's affected.

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

Affected URL's / API's:

OTG-INPVAL-005_3

INPUT_VALIDATION_TESTING

We logged into the application with an (non-existing) accountant acc0unt4nt@juice-sh.op with
accountant-level permissions without ever registering that user and we created the needed user
“out of the air”.

Ephemeral Accountant

Webapplication and Database Server.

Step X:
Enter the following sql syntax in the login field email and enter any sting in the password field:
' UNION SELECT * FROM (SELECT 15 as 'id', '' as 'username',
'acc0unt4nt@juice-sh.op' as 'email', '12345' as 'password',
'accounting' as 'role', '123' as 'deluxeToken',
'1.2.3.4' as 'lastLoginIp' ,
'/assets/public/images/uploads/default.svg' as 'profileImage',
'' as 'totpSecret', 1 as 'isActive',
'1999-08-16 14:14:41.644 +00:00' as 'createdAt',
'1999-08-16 14:33:41.930 +00:00' as 'updatedAt',
null as 'deletedAt')--

No mitigation to avoid, minimize or compensate the finding found or needed.

14e52a97-b147-4cd4-a0d5-d349bd9ca201

MEDIUM

https://juice-shop.herokuapp.com/#/login

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

Affected URL's / API's:

SQL injection vulnerabilities arise when user-controllable data is incorporated into database SQL
queries in an unsafe manner.
Inside Login Form using the ' or TRUE-- Syntax will enable the user to login as the Admin.

Admin Account SQL Injection for Login

The active User-Session with Admin priviledges can affect the whole application.

Step 1:
Go to login page.

Step 2:
Enter ' or TRUE-- in the username field and enter a random password.

Step 3:
Click “Login”.

You will now be authenticated as the Juice Shop Admin.

Preventing SQL Injections can be easily accomplished by adding: - Prepared statements
- Stored procedures
- Whitelist Input Validation
- Escaping all input, that could be user-supplied - Webapp Firewall

271a2e85-5804-4b78-a12a-b722049321b3

HIGH

https://juice-shop.herokuapp.com/#/login

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

Affected URL's / API's:

An attacker would try to exploit SQL Injection to find out as much as possible about your database
schema.
This subsequently allows much more targeted, stealthy and devastating SQL Injections.

Exfiltrated the entire DB schema definition via SQL Injection

Database Server

Step 1:
Search for any product in the Juice Shop.

Step 2:
Look at the network traffic and copy the search request (https://juice-
shop.herokuapp.com/rest/products/search?q=)

Step 3:
Run the request through sqlmap liek:
sqlmap -u http://0.0.0.0:3000/rest/products/search\?q\= --dbs --level=3 --risk=3

Step 4:
Run the request through sqlmap with schema flag like:
sqlmap -u http://0.0.0.0:3000/rest/products/search\?q\= --schema

Step 5:
Enterering the following string in the search field results in getting the the emails and password
hashes of all users:
test ')) UNION ALL SELECT NULL,email,password,NULL,NULL,NULL,NULL,NULL,NULL from
users--

Preventing SQL Injections can be easily accomplished by adding: - Prepared statements
- Stored procedures
- Whitelist Input Validation
- Escaping all input, that could be user-supplied - Webapp Firewall

810138c0-dee4-42b3-8580-1fd0a0d92fa6

CRITICAL

https://juice-shop.herokuapp.com/#/search?q=, https://juice-
shop.herokuapp.com/rest/products/search?q=

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

Affected URL's / API's:

OTG-INPVAL-005_6

INPUT_VALIDATION_TESTING

NoSQL Injection is different than classic SQL Injection, so I decided to broader my knowledge,
reading A NoSQL Injection Primer (with Mongo) – Null Sweep article.

There is trick described, when author is bypassing logging page with simple $ne (not-equals) verb
like.

NoSQL Manipulation (Injection)

Mongo Database Server

Step 1:
Open any product in the Juice Shop homepage after logging in and write a review.

Step 2:
Look at the PUT request and change the request body from:
{"message":"test","author":"admin@juice-sh.op"}
to this:
{"id": { "$ne": -1 }, "message":"test"}

Step 3:
Send the request with the $ne (not-equals) verb.

No mitigation to avoid, minimize or compensate the finding found or needed.

4e28eb62-2a59-471d-b1f8-2b3de54f541b

LOW

https://juice-shop.herokuapp.com/rest/products/1/reviews

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

Affected URL's / API's:

A denial-of-service (DoS) attack occurs when legitimate users are unable to access information
systems, devices, or other network resources due to the actions of a malicious cyber threat actor.
Services affected may include email, websites, online accounts (e.g., banking), or other services
that rely on the affected computer or network. A denial-of-service condition is accomplished by
flooding the targeted host or network with traffic until the target cannot respond or simply crashes,
preventing access for legitimate users. DoS attacks can cost an organization both time and money
while their resources and services are inaccessible.

NoSQL databases provide looser consistency restrictions than traditional SQL databases.
So basically we will try to invoke sleep(milliseconds) MongoDB method.

NoSQL DoS Injection

Database Server

Step 1:
Open any product on the Juice Shop Homepage.

Step 2:
Take the GET request and change the product id parameter with sleep(1000).

Step 3:
See the Serverresponse be delayed by the sleep command because the server is "napping".

NoSQL databases provide looser consistency restrictions than traditional SQL databases. By
requiring fewer relational constraints and consistency checks, NoSQL databases often offer
performance and scaling benefits. Yet these databases are still potentially vulnerable to injection
attacks, even if they aren’t using the traditional SQL syntax.

fa34ae0c-b230-4448-818b-e55e14d2ce38

CRITICAL

https://juice-shop.herokuapp.com/rest/products/sleep(1000)/reviews

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

Affected URL's / API's:

OTG-ERR-001

ERROR_HANDLING

Inside the complaint screen the user is able to upload a file that should only be ment to be a pdf.
Upon expection of the allowed MIME Types included in the main.js file we can see the following
MIME Types being accepted by the application:
["application/pdf", "application/xml", "text/xml", "application/zip", "application/x-zip-compressed",
"multipart/x-zip"]
Uploading a XML File results in the following error message that doesn't get handled gracefully by
the frontend:
"Error: B2B customer complaints via file upload have been deprecated for security reasons
(filename.xml)"

Deprectated B2B Interface File Upload Error

This deprecated interface affects the frontend, backend and potentially the database depending on
how the uploaded file is being handeled in the backend.

Step 1:
Login to the application with any user.

Step 2:
Go to complaint screen.

Step 3:
Write a small message in text field and upload any xml file before clicking on "Submit".
You will now get the error mentioned in the description.

Adjust the allowed MIME Type in the frontend.

Other generic prevention methods include:
- Check your HTTP response headers
- Check your TLS configuration

Never configure wildcards in:
- CORS allowed origin header

b215d04c-fec9-4f75-8d83-89ba0c6d3e74

HIGH

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

- Redirect URI for OAuth/OIDC

Use Configuration Management:
- Hardening, Remove old configurations
- Proper Error Codes

https://juice-shop.herokuapp.com/#/complain

Affected URL's / API's:

OTG-CRYPST-001

CRYPTOGRAPHY

Initially confined to the realms of academia and the military, cryptography has become ubiquitous
thanks to the Internet. Common every day uses of cryptography include mobile phones, passwords,
SSL, smart cards, and DVDs.

The proper and accurate implementation of cryptography is extremely critical to its efficiency. A
small mistake in configuration or coding will result in removing a large degree of the protection it
affords and rendering the crypto implementation useless against serious attacks.

Weird Crypto

Tokens / Cookies

Step 1:
Login to the application with any valid user.

Step 2:
Look at the network traffic and copy the token that is part of the cookie header.

Step 3:
Decode the Base64 Token on an application like Cyberchef and copy the included passsword hash.

Step 4:
Analyse the hash to find aout the type through:
https://www.tunnelsup.com/hash-analyzer/

Step 5:
Unsalted MD4 and MD5 hashes are barely speedbumps to cracking passwords at this point in time,
and should never be used.

Step 6:
With tools like Hashcat or John the Ripper we can now easily crack the password and get it in
cleartext.

b2d779c5-150e-4dee-a40e-0f45b6027ea3

CRITICAL

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Use more secure algorithms to encrypt sensible data.
For information like passwords it is recommended to use salting and strong and slow hashing
algorithms like:
- Argon2
- Bcrypt

No specific URL's or API's affected.

Mitigation:

Affected URL's / API's:

OTG-CLIENT-001

CLIENT_SIDE_TESTING

DOM-based vulnerabilities arise when a client-side script reads data from a controllable part of the
DOM (for example, the URL) and processes this data in an unsafe way.
Adding <iframe src="javascript:alert(`xss`)"> in the search bar of the header results here in the XSS
Vulnerability.

Searchbar DOM XSS

Generally there are three kinds of XXS:
1. DOM-Based Cross-Site Scripting
2. Reflected Cross-Site Scripting
3. Persistent Cross-Site Scripting

The found XSS only impacts the Webapplication itself.

Step 1:
Click on the search field of the header.

Step 2:
Enter <iframe src="javascript:alert(`xss`)">

Step 3:
Press ENTER to exucute the query.

You will now get a PopUp because the javascript code was executed in the browser.

- Do NOT put untrusted data into templates & SSR
- Use strict input validation & strong typing (server-side)
- Contextual Output Encoding
- Sanitizing Input Fields
- Content Security Policies
- Trusted Types
- Protect Session Cookie (HTTPOnly)

19521078-aef5-4505-8b1f-958e75bd3fd1

HIGH

Finding:

Title:

Description:

Impact:

Reproduction Steps:

Mitigation:

https://juice-
shop.herokuapp.com/#/search?q=%3Ciframe%20src%3D%22javascript:alert('xss')%22%3E

Affected URL's / API's:

Appendencies

Risk score Risk level category

Low

Medium

High

Critical

S
ev

er
it

y

Likelihood

Low

Low

Low

Low

Low

Low LowLow

Critical Critical

Critical

HighHigh

High

High

High

Medium

Medium

Medium

Medium

Medium

MediumMedium

Medium

Medium

Rare (1) Possible
(3) Likely (4) Almost

certain (5)

Catastrophic (5)

Major (4)

Moderate (3)

Minor (2)

Insignificant (1)

1 to 4

5 to 10

11 to 18

19 to 25

Unlikely
(2)

Findings Severities

Risk Matrix

Each finding has been assigned a severity rating of critical high, medium, or low. The rating is based off
of an assessment of the priority with which each finding should be viewed and the potential impact each
has on the confidentiality, integrity, and availability.

The risk matrix is used to assess the potential damage of a hazard, based on the likelihood and
severity factors. The likelihood and severity scores are multiplied to obtain a score value. This score is
looked up in the risk ranges to determine the risk level. An example of a hazard risk matrix is given
below:

Example, if Likelihood = Possible (3) and Severity = Major (4), the risk level is determined by severity *
likelihood, which is 3*4 = 12. The score 12 falls in 'High' risk range.

Rating Severity Rating Definitions

Critical

Exploitation of the technical or procedural vulnerability will cause
substantial harm. Significant political, financial, and/or legal damage is
likely to result. The threat exposure is critical, and a publicly available
mechanism exists to exploit the vulnerability. Security controls are not
effectively implemented to reduce the severity of impact if the vulnerability
were exploited.

High

Exploitation of the technical or procedural vulnerability will cause
substantial harm. Significant political, financial, and/or legal damage is
likely to result. The threat exposure is high, thereby increasing the
likelihood of occurrence. Security controls are not effectively implemented
to reduce the severity of impact if the vulnerability were exploited.

Medium

Exploitation of the technical or procedural vulnerability will significantly
impact the confidentiality, integrity, and/or availability of the system,
application, or data. Exploitation of the vulnerability may cause moderate
financial loss or public embarrassment. The threat exposure is moderate-
to-high, thereby increasing the likelihood of occurrence. Security controls
are in place to contain the severity of impact if the vulnerability were
exploited, such that further political, financial, or legal damage will not
occur. - OR - The vulnerability is such that it would otherwise be
considered High Risk, but the threat exposure is so limited that the
likelihood of occurrence is minimal.

Low

Exploitation of the technical or procedural vulnerability will cause minimal
impact to operations. The Confidentiality, Integrity and Availability (CIA) of
sensitive information are not at risk of compromise. Exploitation of the
vulnerability may cause slight financial loss or public embarrassment. The
threat exposure is moderate-to-low. Security controls are in place to
contain the severity of impact if the vulnerability were exploited, such that
further political, financial, or legal damage will not occur. - OR - The
vulnerability is such that it would otherwise be considered Medium Risk, but
the threat exposure is so limited that the likelihood of occurrence is
minimal.

