203 lines
6.0 KiB
Python
Executable File
203 lines
6.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import sys
|
|
import random
|
|
from enum import Enum
|
|
from typing import NoReturn, Generator
|
|
from types import ModuleType
|
|
from subprocess import Popen
|
|
|
|
import numpy as np
|
|
import mediapipe as mp
|
|
import cv2
|
|
from cv2 import VideoCapture
|
|
|
|
class FingerType(Enum):
|
|
BASE = 0
|
|
BASE_RIGHT = 1
|
|
THUMB_BASE = 2
|
|
THUMB_KNUCKLE_1 = 3
|
|
THUMB_TIP = 4
|
|
INDEX_BASE = 5
|
|
INDEX_KNUCKLE_1 = 6
|
|
INDEX_KNUCKLE_2 = 7
|
|
INDEX_TIP = 8
|
|
MIDDLE_BASE = 9
|
|
MIDDLE_KNUCKLE_1 = 10
|
|
MIDDLE_KNUCKLE_2 = 11
|
|
MIDDLE_TIP = 12
|
|
RING_BASE = 13
|
|
RING_KNUCKLE_1 = 14
|
|
RING_KNUCKLE_2 = 15
|
|
RING_TIP = 16
|
|
PINKY_BASE = 17
|
|
PINKY_KNUCKLE_1 = 18
|
|
PINKY_KNUCKLE_2 = 19
|
|
PINKY_TIP = 20
|
|
|
|
def get_42_img(
|
|
img_path: str,
|
|
margin_top: int,
|
|
margin_bottom: int,
|
|
margin_left: int,
|
|
margin_right: int,
|
|
) -> np.ndarray:
|
|
global img42_side_len
|
|
|
|
img: np.ndarray = cv2.imread(img_path, 0)
|
|
|
|
if len(img.shape) in [1, 2]:
|
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
|
|
|
img = cv2.flip(img, 1)
|
|
|
|
img_height, img_width = img.shape[:2]
|
|
img = img[
|
|
margin_top:img_height-margin_bottom,
|
|
margin_left:img_width-margin_right,
|
|
]
|
|
|
|
b_top, b_bottom, b_left, b_right = [10]*4
|
|
img = cv2.copyMakeBorder(img, b_top, b_bottom, b_left, b_right, cv2.BORDER_CONSTANT, value=(0, 0, 0))
|
|
|
|
img = cv2.resize(img, (img42_side_len, img42_side_len))
|
|
|
|
return img
|
|
|
|
mp_hands = mp.solutions.hands
|
|
mp_draw: ModuleType = mp.solutions.drawing_utils
|
|
|
|
img42_side_len = 70
|
|
img42: np.ndarray = get_42_img(
|
|
"./assets/img/42.png",
|
|
margin_top = 100 + 20,
|
|
margin_bottom = 100 + 20,
|
|
margin_left = 100,
|
|
margin_right = 100,
|
|
)
|
|
|
|
def touches_42(x: int, y: int, img42_x: int, img42_y: int) -> bool:
|
|
global collected_42
|
|
|
|
return (
|
|
img42_x <= x <= img42_x + img42_side_len
|
|
and img42_y <= y <= img42_y + img42_side_len
|
|
)
|
|
|
|
def add_directional_triangle(
|
|
frame: np.ndarray,
|
|
x1: int,
|
|
y1: int,
|
|
x2: int,
|
|
y2: int,
|
|
rgb: tuple[int, int, int],
|
|
side_len: int,
|
|
stretch: float,
|
|
) -> tuple[int, int]:
|
|
dir_vector = np.array([
|
|
x1 - x2, y1 - y2
|
|
]).astype(np.float64)
|
|
|
|
# normalize
|
|
dir_vector /= np.linalg.norm(dir_vector)
|
|
|
|
triangle_height = side_len * (3**0.5) / 2
|
|
half_base = side_len / 2
|
|
|
|
perp_vector = np.array([-dir_vector[1], dir_vector[0]])
|
|
|
|
apex_vertex = (int(x1 + dir_vector[0] * triangle_height * 2/3 * stretch), int(y1 + dir_vector[1] * triangle_height * 2/3 * stretch))
|
|
left_vertex = (int(x1 - perp_vector[0] * half_base - dir_vector[0] * triangle_height/3),
|
|
int(y1 - perp_vector[1] * half_base - dir_vector[1] * triangle_height/3))
|
|
right_vertex = (int(x1 + perp_vector[0] * half_base - dir_vector[0] * triangle_height/3),
|
|
int(y1 + perp_vector[1] * half_base - dir_vector[1] * triangle_height/3))
|
|
|
|
triangle = np.array([apex_vertex, left_vertex, right_vertex])
|
|
cv2.drawContours(frame, [triangle], 0, rgb, -1)
|
|
|
|
return apex_vertex
|
|
|
|
def get_finger_positions(
|
|
frame: np.ndarray,
|
|
hands: mp.solutions.hands.Hands,
|
|
add_landmarks: bool,
|
|
) -> Generator[list[tuple[int, int, int]], None, None]:
|
|
height, width = frame.shape[:2]
|
|
|
|
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
results = hands.process(img_rgb)
|
|
|
|
if results.multi_hand_landmarks:
|
|
for hand_landmarks in results.multi_hand_landmarks:
|
|
positions = []
|
|
for id, lm in enumerate(hand_landmarks.landmark):
|
|
x = int(lm.x * width)
|
|
y = int(lm.y * height)
|
|
positions.append((FingerType(id), x, y))
|
|
yield positions
|
|
if add_landmarks:
|
|
mp_draw.draw_landmarks(frame, hand_landmarks, mp_hands.HAND_CONNECTIONS)
|
|
|
|
def show_frame(frame: np.ndarray, to_stdout: bool=False) -> None:
|
|
if to_stdout:
|
|
sys.stdout.buffer.write(frame.tobytes())
|
|
else:
|
|
cv2.imshow("Image", frame)
|
|
cv2.waitKey(1)
|
|
|
|
def collect_sfx() -> None:
|
|
Popen(['paplay', './assets/sfx/collect.mp3'])
|
|
|
|
def main() -> NoReturn:
|
|
Popen(['paplay', './assets/sfx/start.mp3'])
|
|
|
|
capture: VideoCapture = cv2.VideoCapture(0)
|
|
hands = mp_hands.Hands(max_num_hands=2)
|
|
collected_42 = True
|
|
img42_x = -img42_side_len - 1
|
|
img42_y = -img42_side_len - 1
|
|
|
|
i = 0
|
|
while True:
|
|
success: bool
|
|
frame: np.ndarray
|
|
success, frame = capture.read()
|
|
if not success:
|
|
continue
|
|
|
|
if i > 30:
|
|
if collected_42:
|
|
collected_42 = False
|
|
frame_height, frame_width = frame.shape[:2]
|
|
img42_x = random.randint(0, frame_width - img42_side_len - 1)
|
|
img42_y = random.randint(0, frame_height - img42_side_len - 1)
|
|
frame[
|
|
img42_y : img42_y+img42_side_len,
|
|
img42_x : img42_x+img42_side_len,
|
|
] = img42
|
|
|
|
for positions in get_finger_positions(frame, hands, add_landmarks=True):
|
|
index_knuckle_1_pos: tuple[int, int] = (-1, -1)
|
|
for finger_id, finger_x, finger_y in positions:
|
|
if finger_id == FingerType.INDEX_KNUCKLE_2:
|
|
index_knuckle_1_pos = (finger_x, finger_y)
|
|
elif finger_id == FingerType.INDEX_TIP and index_knuckle_1_pos != (-1, -1):
|
|
apex_x, apex_y = add_directional_triangle(
|
|
frame,
|
|
finger_x,
|
|
finger_y,
|
|
*index_knuckle_1_pos,
|
|
(0, 0, 0,),
|
|
side_len=70,
|
|
stretch=2.0,
|
|
)
|
|
if not collected_42 and touches_42(apex_x, apex_y, img42_x, img42_y):
|
|
collected_42 = True
|
|
i = 0
|
|
collect_sfx()
|
|
show_frame(frame, to_stdout=(not sys.stdout.isatty()))
|
|
i += 1
|
|
|
|
if __name__ == '__main__':
|
|
main()
|